Quiz 7

Chemical Engineering Thermodynamics
February 25, 2021

1) For a throttle valve, such as used in a refrigerator, $\Delta H=0$. You might want to know analytic expressions in terms of $T, P, V, C_{p}, C_{v}, \alpha_{p}$, and κ_{T} for the change in entropy and temperature $\left(\mu_{J T}\right)$ across a throttle valve, $\left(\frac{\partial S}{\partial P}\right)_{H},\left(\frac{\partial T}{\partial P}\right)_{H}$. Derive these analytic expressions.
2) Last week we calculated the COP for a 5-ton cascade refrigerator for RNA/DNA using R134a and ethane.
Repeat that calculation of COP using propane and ethane. Determine the values using PREOS.xls. For the reference state use $H_{R}=0 ; T=298 \mathrm{~K} ; P=0.1 \mathrm{MPa} ;$ Real Fluid; and the lowest fugacity root with a solution.

Stage 1 uses propane as a refrigerant and Stage 2 uses ethane. The condenser (8) is at $30^{\circ} \mathrm{C}$, the inter-stage heat exchanger $(6,4)$ is at $-30^{\circ} \mathrm{C}$, and the evaporator (2) is at $-\mathbf{8 6}{ }^{\circ} \mathrm{C}$. The total cooling is $\mathbf{5}$ tons of refrigerant. Assume that the heat exchanger has no thermal loss.
Use PREOS.xls to obtain all values.
The two compressors have an efficiency of $\mathbf{0 . 8 5}$.
1-ton refrigeration $=12,600 \mathrm{~kJ} / \mathrm{h}$
Fill the table values in the process stream table.

Figure 1. Cascade refrigeration cycle. The refrigerants do not mix in the evaporator/condenser. $P-H$ diagrams for the upper and the lower cycles.

ANSWERS: Quiz 7
Chemical Engineering Thermodynamics February 25, 2021

$$
\begin{array}{cc}
\left(\frac{\partial S}{\partial P}\right)_{H} & -S U V \\
d H=V d P+T d S & -p G F \\
\left(\frac{\partial H}{\partial P}\right)_{H}^{0}=V\left(\frac{\partial P}{\partial P}\right)_{I F}^{1}+T\left(\frac{\partial S}{\alpha P}\right)_{H} \\
\left(\frac{\partial S}{\partial P}\right)_{H}=\frac{-V}{T}
\end{array}
$$

$$
\left(\frac{\partial T}{\partial P}\right)_{H}
$$

$$
\begin{aligned}
& \text { Trine Pudart Mule }\left(\frac{\partial A}{\partial t}\right)_{P}=C_{p} \\
& \left(\frac{\partial T}{\partial P}\right)_{H}=\frac{-\left(\frac{\partial T}{\partial H}\right)_{p}}{\left(\frac{\partial P}{\partial H}\right)_{T}}=\frac{V\left(T \alpha_{p}-1\right)}{C_{p}} \\
& \left(\frac{\partial H}{\partial P}\right)_{T}=V\left(\frac{\partial P}{\partial P}\right)_{T}+\tau\left(\frac{\partial S}{\partial P}\right)_{T} \\
& =V \bar{T}\left(\frac{\partial V}{\partial T}\right)_{p} \\
& =V T T \alpha_{p}
\end{aligned}
$$

Stream	P, Mpa	T, ${ }^{\circ} \mathrm{C}$	$\eta_{\text {e }}$	State	H, J/mole	S, J/(mole K)	q	$\Delta Q / W_{s,}$ J/mole	m', kg/h	\underline{Q} or $\underline{W}_{s}, \mathrm{~kJ} / \mathrm{h}$
ETHANE										
1	0.116	-86	-	L/v	-15,300	-77	0.295	0	183	0
2	0.116	-86	-	sv	-5,020	-22	1	10,300	183	62830
3'	1.06	19	1	scv	-904	-22	1	4,120	183	25132
3	1.06	32	0.85	SCv	-178	-19.6	1	4850	183	29585
4	1.06	-30	-	SL	-15,300	-80.4	0	-15,100	183	-92110
Propane										
5	0.167	-30	-	L/V	-15,500	-66.3	0.36	0	349	0
6	0.167	-30	-	Sv	-3,860	-18.4	1	11,600	349	92009
$7{ }^{\prime}$	1.08	40.6	1	v	9.32	-18.4	1	3,870	349	30696
7	1.08	48.6	0.85	v	692	-16.3	1	4552	349	36106
8	1.08	30	-	SL	-15,500	-69.2	0	-16,200	349	-128495
Net COP =	0.956452905	Carnot COP =	1.61							

