Quiz 7 Chemical Engineering Thermodynamics February 25, 2021

- 1) For a throttle valve, such as used in a refrigerator, $\Delta H = 0$. You might want to know analytic expressions in terms of *T*, *P*, *V*, *C_p*, *C_v*, α_p , and κ_T for the change in **entropy and temperature** (μ_{JT}) across a throttle valve, $\left(\frac{\partial s}{\partial P}\right)_H$, $\left(\frac{\partial T}{\partial P}\right)_H$. Derive these analytic expressions.
- 2) Last week we calculated the COP for a 5-ton cascade refrigerator for RNA/DNA using R134a and ethane.

Repeat that calculation of COP using propane and ethane. Determine the values using **PREOS.xls**. *For the reference state use* $H_R = 0$; T = 298K; P = 0.1 *MPa*; *Real Fluid*; *and the lowest fugacity root with a solution*.

Stage 1 uses propane as a refrigerant and Stage 2 uses ethane. The condenser (8) is at 30°C, the inter-stage heat exchanger (6, 4) is at -30°C, and the evaporator (2) is at -86°C. The total cooling is 5 tons of refrigerant. Assume that the heat exchanger has no thermal loss.

Use PREOS.xls to obtain all values. The two compressors have an efficiency of 0.85. 1-ton refrigeration = 12,600 kJ/h

Fill the table values in the process stream table.

Figure 1. Cascade refrigeration cycle. The refrigerants do not mix in the evaporator/condenser. P-H diagrams for the upper and the lower cycles.

ANSWERS: Quiz 7 Chemical Engineering Thermodynamics February 25, 2021

-SUV + A -pGF (25) TAJ dH = vdP + TdS+ T (IP)H (JA) = V (JA) IF Trip'e Pudoit Rule (2+) = Cp 27 V(Txp GH б 2 Maxwell = V # T (2V) = V # T Vxn

Stream	P, Mpa	т, °С	η	State	H, J/mole	S, J/(mole K)	q	$\Delta Q/W_s$, J/mole	m', kg/h	<u>∆Q</u> or <u>W</u> ₅, kJ/h
					ETHANE					
1	0.116	-86	-	L/V	-15,300	-77	0.295	0	183	0
2	0.116	-86	-	sv	-5,020	-22	1	10,300	183	62830
3'	1.06	19	1	scv	-904	-22	1	4,120	183	25132
3	1.06	32	0.85	scv	-178	-19.6	1	4850	183	29585
4	1.06	-30	-	SL	-15,300	-80.4	0	-15,100	183	-92110
					Propane	1				
5	0.167	-30	-	L/V	-15,500	-66.3	0.36	0	349	0
6	0.167	-30	-	sv	-3,860	-18.4	1	11,600	349	92009
7'	1.08	40.6	1	v	9.32	-18.4	1	3,870	349	30696
7	1.08	48.6	0.85	v	692	-16.3	1	4552	349	36106
8	1.08	30	-	SL	-15,500	-69.2	0	-16,200	349	-128495
Net COP =	0.956452905	Carnot COP =	1.61							